import neptune.new as neptune from sklearn.datasets import load_wine ... run = neptune.init_run() data = load_wine() X_train, X_test, y_train, y_test = train_test_split(...) PARAMS = {"n_estimators": 10, "max_depth": 3, ...} run["parameters"] = PARAMS clf = RandomForestClassifier(**PARAMS) ... test_f1_score = f1_score(y_test, y_test_pred.argmax(axis=1), average="macro") run["test_f1"] = test_f1_score run["model"].upload("model.pkl")
Pros
Cons